

AQUAFocus Online -

PLANIFICACIÓN DE REDES DE DRENAJE URBANO

Datos básicos

CRÉDITOS: 2 ECTS

DURACION Y DEDICACIÓN: 50 horas de dedicación que incluyen horas de formación lectiva online y horas de autoformación. Aproximadamente el programa requiere 12.5 horas semanales

IDIOMA DE IMPARTICIÓN: Español

TITULACIÓN: Los participantes que superen el programa recibirán un certificado acreditativo de la Escuela del Agua (Suez). Los créditos cursados serán reconocidos como créditos itinerables para cursar los Posgrados o el Máster de Itinerario en Tecnología y Gestión del Agua

IMPORTE DE MATRÍCULA: 290 euros. Bonificables por la Fundación Tripartita

Te ofrece...

...un conocimiento específico del diseño de una red de drenaje y las técnicas y metodologías requeridas para afrontar proyectos de ampliación o modernización de redes ya existentes.

El contenido del programa está especialmente indicado para aquellos profesionales que tengan interés en planificar el drenaje urbano según criterios de hidráulica e hidrología y, a la vez, profundizar en la implantación de la red y su proceso constructivo, para finalmente estar capacitado para presentar los documentos necesarios para liderar un proyecto ejecutivo.

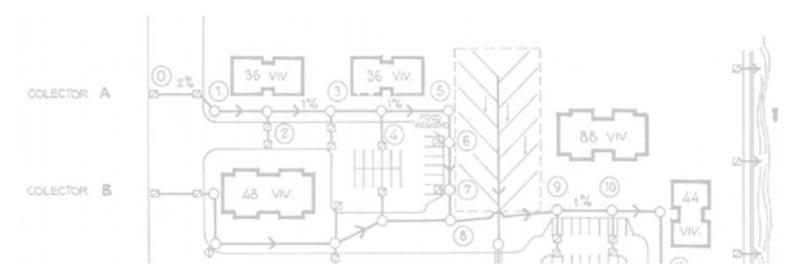
Equipo docente

Benjamino Russo

Desde el 2004 trabaja en el campo de la hidrología urbana y, en particular, en temas relacionados con la planificación y el proyecto de sistemas de drenaje urbano. Desde el 2004 hasta el 2013 trabajó en la Sección de Planificación y Proyecto de la empresa Clavegueram de Barcelona SA (CLABSA).

Actualmente trabaja para la Dirección de Drenaje Urbano de Aqualogy como project manager de proyectos de I+D+i. Además desde el 2006 es profesor titular de la Escuela Politécnica de La Almunia y coordinador docente del grado en Ingeniería Civil.

Es doctor ingeniero de Caminos por la Universidad Politécnica de Catalunya


Xavier Falcó

Desde 1990 ejerce como profesional en el sector del agua. Se dedica a la redacción de proyectos y asistencias técnicas a las direcciones de obra dentro del ámbito del drenaje urbano en cualquier ámbito geográfico.

Es ingeniero de Caminos por la Universidad Politécnica de Catalunya.

Programa

¿Cómo quiero que sea mi red en 10 años?

- 1. Introducción a los sistemas de drenaje urbano
- 2. Antecedentes y estado actual del drenaje urbano
- 3. Objetivos y criterios generales de la planificación en el drenaje urbano
- 4. Características y funciones de un sistema de drenaje urbano
 - 4.1. Redes hidrográficas y redes de alcantarillado
 - 4.2. Redes unitarias y redes separativas
 - 4.2.1. Redes unitarias
 - 4.2.2.Redes separativas
 - 4.2.3. Diferencias, ventajas y desventajas entre redes separativas y redes unitarias
 - 4.2.4. Conceptos generales de planificación de redes industriales
 - 4.3. Clasificación de las redes de alcantarillado en función del trazado en planta
 - 4.3.1.Redes arborescentes
 - 4.3.2. Redes de alcantarillado por bandas o zonas verticales
 - 4.3.3. Redes de alcantarillado por bandas o zonas horizontales
 - 4.3.4. Redes de alcantarillado desarrolladas con esquema radial
 - 4.4. Conceptos básicos de hidráulica e hidrología en el drenaje urbano
 - 4.5. Elementos esenciales de un sistema de drenaje
- 5. Criterios de diseño de una red de alcantarillado
 - 5.1. Cálculo de los caudales de diseño
 - 5.2. Caudales de diseño para redes de aguas residuales
 - 5.3. Caudales de diseño para redes de aguas pluviales y redes unitarias
 - 5.4. Funcionamiento en lámina libre de las conducciones
 - 5.5. Velocidades límite

- 6. Metodología general de planificación de un sistema de drenaje urbano
 - 6.1. Fases y componentes de un proceso de planificación
 - 6.2. Sistema informático territorial (SITE) y sistema informático de telecontrol (SITCO)
 - 6.3. Sistemas de modelización (SIMO) en drenaje urbano
 - 6.4. Técnicas de drenaje urbano sostenible (TEDUS)
 - 6.4.1. Medidas preventivas
 - 6.4.2. Sistemas de infiltración o control en origen
 - 6.4.3. Sistemas de transporte permeable
 - 6.4.4. Sistemas de tratamiento pasivo
 - 6.4.5. Posibles restricciones y problemáticas asociadas al uso de TEDUS
 - 6.5. Plan director de un sistema de drenaje urbano
- 7. Gestión avanzada del drenaje urbano
 - 7.1. Principios de la gestión avanzada y ámbito de aplicación
 - La implementación y el reconocimiento de la GADU en un ámbito nacional e internacional
 - 7.3. Beneficios aportados por la GADU

ည်းCómo diseño y dimensiono mi sistema de alcantarillado?**

- 1. Descripción de la red y los elementos singulares y auxiliares
 - 1.1. Tipologías
 - 1.2. Elementos de una red de saneamiento
 - 1.2.1.Colectores
 - 1.2.2. Elementos auxiliares
 - 1.2.3.Pozos de bombeo
 - 1.2.4. Depósitos de retención
 - 1.2.5.Otros
- 2. Datos de partida
 - 2.1. Determinación de la población servida
 - 2.2. Determinación de los caudales de diseño
 - 2.2.1.Introducción
 - 2.2.2.Caudales de aguas residuales
 - 2.2.3. Caudales de aguas pluviales
 - 2.3. Información adicional
- 3. Diseño hidráulico de la red
 - 3.1. Definiciones básicas
 - 3.2. Colectores
 - 3.2.1.Flujo en lámina libre
 - 3.2.2.Flujo en carga
 - 3.2.3. Software comercial
 - 3.2.4. Criterios de diseño
 - 3.2.5.Metodología
 - 3.3. Estaciones de bombeo
 - 3.3.1.Criterios de diseño
 - 3.3.2. Dimensionamiento del pozo de bombas
 - 3.3.3.Dimensionamiento de la tubería de impulsión
 - 3.3.4. Dimensionamiento de las bombas
 - 3.4. Depósito de retención

- 3.4.1. Volumen necesario
- 3.4.2. Sistema de colectores
- 3.5. Elementos auxiliares
 - 3.5.1.Orificios calibrados
 - 3.5.2. Aliviaderos frontales
 - 3.5.3. Aliviaderos laterales
- 4. Diseño mecánico de tuberías
 - 4.1. Metodología de cálculo
 - 4.1.1.Coeficientes de seguridad
 - 4.1.2. Datos necesarios para el cálculo
 - 4.1.3. Características de la instalación
 - 4.1.4. Características de los suelos
 - 4.2. Acciones actuantes
 - 4.3. Presión vertical y esfuerzos sobre la tubería
- 5. Implantación de la red de saneamiento
 - 5.1. Colectores
 - 5.1.1.Trazado en planta
 - 5.1.2.Trazado en alzado
 - 5.1.3.Zanja tipo
 - 5.2. Impulsiones
 - 5.3. Pozo de bombeo
 - 5.4. Depósitos de retención
- 6. Proceso constructivo
 - 6.1. Colectores
 - 6.2. Depósitos de retención
- 7. Documentos de un proyecto
 - 7.1. Documentos de un proyecto

**Para el desarrollo de este reto será necesaria la descarga del software libre *SWMM* (storm water management model), desarrollado por la Agencia Norteamericana de Medio Ambiente (EPA). Compatible con Windows.

